Molecular Mechanisms Underlying Inhibitory Binding of Alkylimidazolium Ionic Liquids to Laccase.
نویسندگان
چکیده
Water-miscible alkylimidazolium ionic liquids (ILs) are "green" co-solvents for laccase catalysis, but generally inhibit enzyme activity. Here, we present novel insights into inhibition mechanisms by a combination of enzyme kinetics analysis and molecular simulation. Alkylimidazolium cations competitively bound to the TI Cu active pocket in the laccase through hydrophobic interactions. Cations with shorter alkyl chains (C₂~C₆) entered the channel inside the pocket, exhibiting a high compatibility with laccase (competitive inhibition constant Kic = 3.36~3.83 mM). Under the same conditions, [Omim]Cl (Kic = 2.15 mM) and [Dmim]Cl (Kic = 0.18 mM) with longer alkyl chains bound with Leu296 or Leu297 near the pocket edge and Leu429 around TI Cu, which resulted in stronger inhibition. Complexation with alkylimidazolium cations shifted the pH optima of laccase to the right by 0.5 unit, and might, thereby, lead to invalidation of the Hofmeister series of anions. EtSO₄- showed higher biocompatibility than did Ac- or Cl-, probably due to its binding near the TI Cu and its hindering the entry of alkylimidazolium cations. In addition, all tested ILs accelerated the scavenging of 2, 2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals, which, however, did not play a determining role in the inhibition of laccase.
منابع مشابه
Synthesis and anti-microbial potencies of 1-(2-hydroxyethyl)-3-alkylimidazolium chloride ionic liquids: microbial viabilities at different ionic liquids concentrations.
Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, L...
متن کاملLocal order and long range correlations in imidazolium halide ionic liquids: a combined molecular dynamics and XAS study.
A thorough characterization of the structural properties of alkylimidazolium halide ionic liquids (ILs), namely 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br with n = 5, 6, 8, 10) and iodide ([C6mim]I), has been carried out by combining molecular dynamics simulations and EXAFS spectroscopy. The existence of a local order in [Cnmim]Br ILs has been evidenced, with anions and imidazolium head gro...
متن کاملMolecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin
Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...
متن کاملRetention mechanism of selected ionic liquids on a pentafluorophenylpropyl polar phase: investigation using RP-HPLC.
This study investigated the retention mechanism of a congeneric group of imidazolium ionic liquid cations with alkyl functional groups of different lengths, an aryl substituent, and one pyridinium cation on a pentafluorophenylpropyl silica-based stationary phase. The influence of organic modifier type and content in the mobile phase on the retention mode of alkylimidazolium ionic liquid cations...
متن کاملProduction of bioactive cellulose films reconstituted from ionic liquids.
A new method for introducing enzymes into cellulosic matrixes which can be formed into membranes, films, or beads has been developed using a cellulose-in-ionic-liquid dissolution and regeneration process. Initial results on the formation of thin cellulose films incorporating dispersed laccase indicate that active enzyme-encapsulated films can be prepared using this methodology and that precoati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2017